Math 128a - Week 11 Worksheet

GSI: Izak, $(4 / 07 / 21)$

5.3 Problems

Use Taylor's method of order two to approximate the solutions for each of the following two initial value problems.

Problem 1. $y^{\prime}=t e^{3 t}, 0 \leq t \leq 1, y(0)=0, h=.5$
Problem 2. $y^{\prime}=\sin (t)+e^{-t}, 0 \leq t \leq 1, y(0)=0, h=.5$

5.4 Problems

Problem 3. Use modified Euler method to approximate the solution to the following initial-value problem and compare the results to the actual values: $y^{\prime}=1+y / t, 1 \leq t \leq 2, y(1)=2, h=.25, y(t)=t \ln t+2 t$.

Problem 4. Repeat the above problem using Midpoint method.
Problem 5. Repeat the problem with Heun's method
Problem 6. Repeat the problem with Runge-Kutta of order four.

5.6 Problems

Problem 7. Use two step Adams-Bashforth methods to approximate the solutions to the following initialvalue problem. Use exact starting values and compare the results to actual values.

$$
y^{\prime}=t e^{3 t}-2 y, 0 \leq t \leq 1, y(0)=0, h=.2 . \text { Actual solution: } y(t)=\frac{1}{5} t e^{3 t}-\frac{1}{25} e^{3 t}+\frac{1}{25} e^{-2 t}
$$

